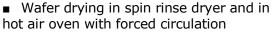
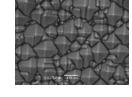


Semiconductor and printed electronics processing technologies

Wet Chemical Processes


Description:


□ Batch wet-bench processes

Processes:

- Saw damage etching of silicon substrate in KOH solution
- Selective alkaline etching of silicon substrate leading to a pyramid structure – textured surface
- Sequential wafer cleaning in bath of aqueous solutions NH₄OH, H₂O₂, HF, HCl

Class purity: ISO Class 4

Capacity: 100 substrates per hour

Handling: batches, PP and PFA carriers for

25 wafers - 5 and 6 inch size

High Temperature Processes

Description:

Equipments for high temperature processes used in production of solar cells and other semiconductor devices are installed in clean room.

Processes:

- POCl₃ and BBr₃ diffusion
- LPCVD a PECVD deposition of dielectric layers
- Thermal oxidation (optionally)

Class purity: ISO Class 3

Deposition of Dielectric Layers - PECVD

- Single tube furnace
- Quartz tube 300mm in diameter
- Vacuum system with dry pump Adixen
- Advanced process control system for control and monitoring of process parameters via touch terminal
- Substrates are loaded on a graphite boat moved into quartz reactor
- Vacuum-tight doors are part of the loading system
- Multisource gas board
- RF power generator 450kHz

Process:

- PECVD one-side deposition of thin dielectric layers - SiNx, SiOx, AlOx
- Processing temperature up to 450°C

Substrate: crystalline silicon wafer, formats 125x125 mm and 156x156 mm

Capacity: 108 substrates per hour **Producer:** SVCS Process Innovation s.r.o.

(CZ)

Three Tubes Furnace for High Temperature Processes - Diffusion and LPCVD

- Quartz tube with diameter of 300 mm
- Advanced control system controlling all process parameters via touch terminals
- Substrates loaded on quartz boats are moved on silicon carbide paddle into individual quartz reactors
- Vacuum system with dry pump Adixen for LPCVD
- Liquid sources for diffusion processes

Process tube A:

■ LPCVD deposition of dielectric layers, Si_3N_4 a SiO_2 , at temperatures up to 800°C (position L)

Sample: crystalline silicon wafers, quartz boats for wafers 125x125mm and 156x156mm

Capacity: 200 substrates per hour

Process tube B:

■ Creating a PN junction by POCl₃ diffusion at atmospheric pressure and at temperatures up to 950°C (position M)

Sample: crystalline silicon wafers, quartz boats for wafers 125x125mm and 156x156mm

Capacity: 300 substrates per hour

Process tube C:

■ Creating a PN junction by BBr₃ diffusion at atmospheric pressure and at temperatures up to 1050°C (position H)

Substrate: crystalline silicon wafers, quartz boats for wafers 125x125mm and 156x156mm

Capacity: 200 substrates per hour **Producer:** SVCS Process Innovation s.r.o.

77)

Three Tubes Diffusion Furnace with Automatic Loading System

- Advanced control system controlling all process parameters via touch terminals
- Soft landing loading system
- Liquid sources for diffusion processes

Process:

■ Creating a PN junction by POCl₃ diffusion at atmospheric pressure and at temperatures up to 950°C

Substrate: crystalline silicon wafer, format up to 156 x 156 mm²

Capacity: 600 substrates per hour **Producer:** Centrotherm (D)

Thin Film Technology

Deposition of Thin Layers by Magnetron Sputtering

Sputtering system:

- 0,75m3 chamber with rotating holder
- Two positions for targets
- Huettinger DC sources with SPARKLE pulse unit
- PinnaclePlus pulse source-frequency up to 350 kHz
- Rotary and turbomolecular pump PFEIFFER
- Manual loading/unloading

Processes:

- Deposition of metallic and dielectric thin layers
- Holder for flat substrates

Substrate: various substrates, format up to 125 x 125 mm²

Capacity: 20 substrates per cycle

Thick Film Technology

Screen Printing

Equipment type A:

- Semiautomatic screen printer Baccini (IT)
- Squeegee movements by linear motors
- Vacuum printing table with protective paper
- Visualization system for very precision positioning print
- Manual loading

Processes:

- Printing of functional layers
- Printing area 200x200 mm
- Minimal printed line width 40 mm
- Printing accuracy 10 mm
- Designed for 12" screens with alu frames

Substrate: crystalline silicon wafer, ceramic substrates, flexible substrates, ...

Capacity: 80 prints per hour **Number of units:** 1

Equipment type B:

- Automatic screen printer Baccini
- Twin table system
- Vacuum printing table with protective paper
- Visualization system for very precision positioning print
- Possible manipulation with substrates by walking beam
- Squeegee movements by linear motors

Processes:

- Printing of functional layers
- Printing area 200x200 mm
- Designed for 12" screens with alu frames

Substrate: crystalline silicon wafer, ceramic substrates, flexible substrates, ...

Capacity: 1.00 prints per hour **Number of units:** 3

Drying of Thick Film Pastes

- Dryer produced by Baccini (IT)
- Substrates loaded on metal plates moved by side chains

Process:

Drying of metallic and other functional pastes

Substrate: crystalline silicon wafers, ceramic and glass substrates

Capacity: 1.000 substrates per hour **Number of units:** 2

Annealing and Sintering of Thick Film Pastes

Equipment A:

- □ Continuous belt IR furnace **SVCS**
 - contains seven individually controllable temperature zones, which are planted with linear halogen tubes
 - allows to adjust the dynamic temperature profile and the maximum temperature about 950°C
 - belt width 495 mm
 - manual loading/unloading

Process:

 Sintering of dried metallic and other functional pastes by annealing in the continuous belt IR furnace

Substrate: crystalline silicon wafers, ceramic and glass substrates

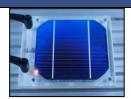
Capacity: 500 substrates per hour

Equipment B:

- Continuous belt IR furnace Centrotherm
- Contains five individually controllable temperature zones
- Heated by linear halogen tubes
- Adjustment of dynamic temperature profile with peak temperature 1.000°C
- Wire conveyor belt with width of 600 mm
- Machine handling system with output camera

Process:

 Sintering of dried metallic anf functional pastes by annealing in the continuous belt IR furnace


Substrate: crystalline silicon wafers, ceramic and glass substrates

Capacity: 1.000 substrates per hour

Laser Technology

Equipment:

- The fiber-laser power of 20W and the wavelength of 1063 nm. Laser beam is deflected by galvo head, workspace size 180 x 180 mm2
- Manual loading/unloading

Processes:

 Cutting, scribing and drilling of various substrates and solar cells

 Creating microstructures (isolation of PN junction, scoring, piercing holes)

Substrate: crystalline silicon wafers, ceramic and glass substrates, format up to 156 x 156 mm²

Capacity: 100 substrates per hour

PV Modules Production

Stringing

Equipment:

- Semiautomatic soldering head with step movement
- Soldering by focused IR light

Processes:

- Soldering of interconnection ribbons on solar cells
- Assembling of strings of crystalline silicon solar cells

Substrate: crystalline silicon solar cells, format up to 156 x 156 mm²

Capacity: 12 strings per hour

Vacuum Lamination

- Vacuum membrane laminator ICOLAM 38/24 produced by Meier Group
- Chamber size: 4.130 x 2.780 x 170 mm
- Electrically heated bottom plate

Processes:

Lamination of PV modules

Substrate: glass / back sheet modules **Capacity:** 8 modules per hour

DIAGNOSTIC TOOLS

Measurement of IV Curves of Solar Cells

Equipment:

- Sun simulators and equipment for measurement of IV curves
- Two testers of solar cells
- Sun simulators with Xelamp, continuous operation, intensity 1000W/sqm

Measurement:

- IV curves in the lighting solar simulator
- Characteristics in bright or dark
- Series resistance with IEC

Sample: solar cell, format up to 156

x156 mm²

Capacity: 100 solar cells per hour

Measurement of Quantum Efficiency

Equipment:

- Single grating monochromator
- Halogen lamp for the probe and bias light beams
- Optical components (mirrors, lenses and filters) from Edmund Optics
- Chopper and lock-in technique

Measurement:

- Quantum efficiency of solar cells
- Optical reflection of silicon substrates and solar cell structures in the spectral range 400-1200 nm

Sample: crystalline silicon solar cells, format up to $125 \times 125 \text{ mm}^2$

Mapping of Minority Carriers Lifetime and Sheet Resistance

Equipment:

- WT2000 by Semilab
- Mapping tool

Measurement:

- Mapping of lifetime of minority charge carriers by method MWPCD (Microwave Photoconductive Decay)
- Mapping of sheet resistance
- (SHR method, non-contact and nondestructive

rriers Lifetime Measurement of Minor

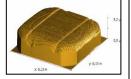
Equipment:

WCT120 by Sinton Consulting

Measurement:

- Measurement of minority charge carriers by method QSSPC
- (Quasi Steady State PhotoConductivity)
- Measurement Suns-Voc
- Dependence of the generated open circuit voltage on illumination for the generation of pseudo V-A characteristics and fitting of diode characteristics of solar cells and parallel resistance

Sample: solar cell, crystalline silicon wafer


LBIC

Equipment:

LBIC (Light Beam Induced Current)

Measurement:

 Mapping of the current response of the solar cells in the

monochromatic light irradiation

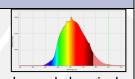
Measurement of Lave

Equipment:

• Four-probe scanner

Measurement:

 Coarse mapping of N+/ P+ layer esistance by four-probe method


Measurement of Spectroscopic Analysis

Equipment:

• Spectra Suite Spectrometer

Measurement:

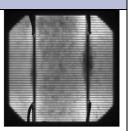
 Absorbance, reflectance and emission, as well as absolute irradiance, color and chemical concentration

FILL FACTORY s.r.o. Televizní 2618 Rožnov pod Radhoštěm Czech Republic

Phone: +420 724 104 385 email: info@fillfactory.cz website: www.fillfactory.cz

Reg. N°: 03228835 VAT Nº: CZ03228835

Registered in Companies Register of Regional Court in Ostrava, Volume C, Entry 59580


Electroluminescence Imaging

Equipment:

• High resolution CCD camera

Measurement:

 Electroluminescence images of solar cells and PV modules

Optical Microscopy

Equipment:

• Optical microscope

Measurement:

 Microscope with digital camera and software for capturing of images with great depth of field (Deep-focus)

Measurement of Surface Tension

Equipment:

 Apparatus for measuring the contact angle by Advex Instruments

Measurement:

 Measuring of the contact angle and evaluation of surface tension

